Year 5 daily maths challenges.

Week 1

Monday

Hundred Words

if $a=1, b=2, c=3, d=4$ etc., what is the value of your name?

a	1
b	2
c	3
d	4
e	5
f	6
g	7
h	8

i	9
j	10
k	11
l	12
m	13
n	14
o	15
p	16

q	17
r	18
s	19
t	20
u	21
v	22
w	23
x	24

y	25
z	26

E.g. Helen $=8+5+12+5+14=44$

Can you find some words that total 100 ?

Tuesday

Square Enough

Write all the square numbers as far as you can go.... e.g. $0,1,4,9, \ldots$

Write the difference between each consecutive pair of square numbers for example:

$$
\begin{gathered}
1-0=1 \\
4-1=3 \\
9-4=
\end{gathered}
$$

Can you use this to continue the square numbers?

Wednesday

Roman Years

Turn these years into Roman Numerals.

Roman Conquest	43	
Battle of Winwaed	655	
Battle of Hastings	1066	
Magna Carta	1215	
Black Death	1349	
Henry VIII head of Church of England	1531	
Christmas banned by Oliver Cromwell	1649	
Queen Victoria's Diamond Jubilee	1897	
Queen Elizabeth's Diamond Jubilee	2012	

Thursday

Match the calculations that result in the same answer.

Multiplication Matches

7×3	5×5	8×6	9×4	10×7
8×8	9×6	2×7	4×8	8×3
9×9	6×6	8×1	7×6	12×6
7×7	3×11	4×6	3×3	5×8
10×4	10×9	2×10	7×8	9×3

Friday

What's Next?

Write the next few numbers in each sequence and explain each pattern.

77, 89, 101, 113,...
$-45,-36,-27,-18, \ldots$
$50,37,24, \ldots$
$0,2,6,12,20 \ldots$

